Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 12: 1340157, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38533086

RESUMO

Key developmental pathways and gene networks underlie the formation of sensory cell types and structures involved in chemosensation, vision and mechanosensation, and of the efferents these sensory inputs can activate. We describe similarities and differences in these pathways and gene networks in selected species of the three main chordate groups, lancelets, tunicates, and vertebrates, leading to divergent development of olfactory receptors, eyes, hair cells and motoneurons. The lack of appropriately posited expression of certain transcription factors in lancelets and tunicates prevents them from developing vertebrate-like olfactory receptors and eyes, although they generate alternative structures for chemosensation and vision. Lancelets and tunicates lack mechanosensory cells associated with the sensation of acoustic stimuli, but have gravisensitive organs and ciliated epidermal sensory cells that may (and in some cases clearly do) provide mechanosensation and thus the capacity to respond to movement relative to surrounding water. Although functionally analogous to the vertebrate vestibular apparatus and lateral line, homology is questionable due to differences in the expression of the key transcription factors Neurog and Atoh1/7, on which development of vertebrate hair cells depends. The vertebrate hair cell-bearing inner ear and lateral line thus likely represent major evolutionary advances specific to vertebrates. Motoneurons develop in vertebrates under the control of the ventral signaling molecule hedgehog/sonic hedgehog (Hh,Shh), against an opposing inhibitory effect mediated by dorsal signaling molecules. Many elements of Shh-signaling and downstream genes involved in specifying and differentiating motoneurons are also exhibited by lancelets and tunicates, but the repertoire of MNs in vertebrates is broader, indicating greater diversity in motoneuron differentiation programs.

2.
Curr Biol ; 33(18): 3872-3883.e6, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37643617

RESUMO

To gain insight into the evolution of motor control systems at the origin of vertebrates, we have investigated higher-order motor circuitry in the protochordate Oikopleura dioica. We have identified a highly miniaturized circuit in Oikopleura with a projection from a single pair of dopaminergic neurons to a small set of synaptically coupled GABAergic neurons, which in turn exert a disinhibitory descending projection onto the locomotor central pattern generator. The circuit is reminiscent of the nigrostriatopallidal system in the vertebrate basal ganglia, in which disinhibitory circuits release specific movements under the modulatory control of dopamine. We demonstrate further that dopamine is required to optimize locomotor performance in Oikopleura, mirroring its role in vertebrates. A dopamine-regulated disinhibitory locomotor control circuit reminiscent of the vertebrate nigrostriatopallidal system was thus already present at the origin of ancestral chordates and has been maintained in the face of extreme nervous system miniaturization in the urochordate lineage.


Assuntos
Cordados , Urocordados , Animais , Dopamina , Vertebrados , Sistema Nervoso
3.
J Vis Exp ; (197)2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37486113

RESUMO

Human pluripotent stem cells (human embryonic stem cells, hESCs, and human induced pluripotent stem cells, hiPSCs) were originally cultured on different types of feeder cells for maintenance in an undifferentiated state in long-term culture. This approach has been supplanted to a large extent by feeder-free culture protocols, but these involve more costly reagents and can promote a transition to a primed state, which restricts the cells' differentiation capacity. In both feeder and feeder-free conditions, the harvesting of hESC or hiPSC colonies for passaging is a necessary procedure for expanding the cultures. To provide an easy and high-yield procedure for passaging hESCs/hiPSCs cultured on feeder cells, we have established a harvesting method using dis-adhesion elicited by the calcium chelator ethylenediaminetetraacetic acid (EDTA). We have assessed the yield and quality of the resultant passaged cells by comparing this approach to the original mechanical harvesting approach, in which colonies are isolated with a scalpel under a microscope (mechanical harvesting was chosen as a comparator to avoid the reagent variability associated with enzymatic harvesting). In one set of experiments, two different hESC lines were maintained on a feeder cell layer of human foreskin fibroblasts. Each line was subjected to multiple passages using EDTA-based or mechanical harvesting and assessed for colony size and morphology, cell density, stemness marker expression, differentiation to the three germ layers in embryoid bodies, and genomic aberrations. In another set of experiments, we used EDTA-based harvesting on two different hiPSC lines and obtained similar results. EDTA-induced dis-adhesion saved time and gave a higher yield of colonies of a more favorable size and more uniform morphology compared to mechanical harvesting. It was also faster than enzymatic harvesting and not prone to enzyme batch variability. The EDTA-induced dis-adhesion method also facilitates the transfer of hESC/hiPSC lines from feeder cell-based culture to feeder-free conditions if desired for downstream use and analysis.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Humanos , Células Alimentadoras , Ácido Edético/farmacologia , Ácido Edético/metabolismo , Fibroblastos , Diferenciação Celular , Proliferação de Células
5.
IBRO Neurosci Rep ; 13: 306-313, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36247525

RESUMO

Studies by His from 1868 to 1904 delineated the critical role of the dorsal roof plate in the development of the hindbrain choroid plexus, and of the rhombic lips in the development of hindbrain auditory centers. Modern molecular studies have confirmed these observations and placed them in a mechanistic context. Expression of the transcription factor Lmx1a/b is crucial to the development of the hindbrain choroid plexus, and also regulates the expression of Atoh1, a transcription factor that is essential for the formation of the cochlear hair cells and auditory nuclei. By contrast, development of the vestibular hair cells, vestibular ganglion and vestibular nuclei does not depend on Lmx1a/b. These findings demonstrate a common dependence on a specific gene for the hindbrain choroid plexus and the primary auditory projection from hair cells to sensory neurons to hindbrain nuclei. Thus, His' conclusions regarding the origins of specific hindbrain structures are borne out by molecular genetic experiments conducted more than a hundred years later.

6.
Dev Biol ; 492: 37-46, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36162551

RESUMO

We recently described calcium signaling in the appendicularian tunicate Oikopleura dioica during pre-gastrulation stages, and showed that regularly occurring calcium waves progress throughout the embryo in a characteristic spatiotemporal pattern from an initiation site in muscle lineage blastomeres. Here, we have extended our observations to the period spanning from gastrulation to post-hatching stages. We find that repetitive Ca2+ waves persist throughout this developmental window, albeit with a gradual increase in frequency. The initiation site of the waves shifts from muscle cells at gastrulation and early tailbud stages, to the central nervous system at late tailbud and post-hatching stages, indicating a transition from muscle-driven to neurally driven events as tail movements emerge. At these later stages, both the voltage gated Na+ â€‹channel blocker tetrodotoxin (TTX) and the T-type Ca2+ channel blocker and nAChR antagonist mecamylamine eliminate tail movements. At late post-hatching stages, mecamylamine blocks Ca2+ signals in the muscles but not the central nervous system. Post-gastrulation Ca2+ signals also arise in epithelial cells, first in a haphazard pattern in scattered cells during tailbud stages, evolving after hatching into repetitive rostrocaudal waves with a different frequency than the nervous system-to-muscle waves, and insensitive to mecamylamine. The desynchronization of Ca2+ waves arising in different parts of the body indicates a shift from whole-body to tissue/organ-specific Ca2+ signaling dynamics as organogenesis occurs, with neurally driven Ca2+ signaling dominating at the later stages when behavior emerges.


Assuntos
Gastrulação , Urocordados , Animais , Gastrulação/fisiologia , Sinalização do Cálcio/fisiologia , Cálcio , Mecamilamina
7.
Front Cell Neurosci ; 16: 830757, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281293

RESUMO

The cellular pathology of schizophrenia and the potential of antipsychotics to target underlying neuronal dysfunctions are still largely unknown. We employed glutamatergic neurons derived from induced pluripotent stem cells (iPSC) obtained from schizophrenia patients with known histories of response to clozapine and healthy controls to decipher the mechanisms of action of clozapine, spanning from molecular (transcriptomic profiling) and cellular (electrophysiology) levels to observed clinical effects in living patients. Glutamatergic neurons derived from schizophrenia patients exhibited deficits in intrinsic electrophysiological properties, synaptic function and network activity. Deficits in K+ and Na+ currents, network behavior, and glutamatergic synaptic signaling were restored by clozapine treatment, but only in neurons from clozapine-responsive patients. Moreover, neurons from clozapine-responsive patients exhibited a reciprocal dysregulation of gene expression, particularly related to glutamatergic and downstream signaling, which was reversed by clozapine treatment. Only neurons from clozapine responders showed return to normal function and transcriptomic profile. Our results underscore the importance of K+ and Na+ channels and glutamatergic synaptic signaling in the pathogenesis of schizophrenia and demonstrate that clozapine might act by normalizing perturbances in this signaling pathway. To our knowledge this is the first study to demonstrate that schizophrenia iPSC-derived neurons exhibit a response phenotype correlated with clinical response to an antipsychotic. This opens a new avenue in the search for an effective treatment agent tailored to the needs of individual patients.

8.
Transl Psychiatry ; 11(1): 554, 2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34716291

RESUMO

While neurodevelopmental abnormalities have been associated with schizophrenia (SCZ), the role of astroglia in disease pathophysiology remains poorly understood. In the present study, we used a human induced pluripotent stem cell (iPSC)-derived astrocyte model to investigate the temporal patterns of astroglia differentiation during developmental stages critical for SCZ using RNA sequencing. The model generated astrocyte-specific gene expression patterns during differentiation that corresponded well to astroglia-specific expression signatures of in vivo cortical fetal development. Using this model we identified SCZ-specific expression dynamics, and found that SCZ-associated differentially expressed genes were significantly enriched in the medial prefrontal cortex, striatum, and temporal lobe, targeting VWA5A and ADAMTS19. In addition, SCZ astrocytes displayed alterations in calcium signaling, and significantly decreased glutamate uptake and metalloproteinase activity relative to controls. These results implicate novel transcriptional dynamics in astrocyte differentiation in SCZ together with functional changes that are potentially important biological components of SCZ pathology.


Assuntos
Células-Tronco Pluripotentes Induzidas , Esquizofrenia , Astrócitos , Humanos , Esquizofrenia/genética , Análise de Sequência de RNA , Transcriptoma
10.
Brain Behav Immun ; 94: 235-244, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33571628

RESUMO

Despite the high heritability of schizophrenia (SCZ), details of its pathophysiology and etiology are still unknown. Recent findings suggest that aberrant inflammatory regulation and microRNAs (miRNAs) are involved. Here we performed a comparative analysis of the global miRNome of human induced pluripotent stem cell (iPSC)-astrocytes, derived from SCZ patients and healthy controls (CTRLs), at baseline and following inflammatory modulation using IL-1ß. We identified four differentially expressed miRNAs (miR-337-3p, miR-127-5p, miR-206, miR-1185-1-3p) in SCZ astrocytes that exhibited significantly lower baseline expression relative to CTRLs. Group-specific differential expression (DE) analyses exploring possible distinctions in the modulatory capacity of IL-1ß on miRNA expression in SCZ versus CTRL astroglia revealed trends toward altered miRNA expressions. In addition, we analyzed peripheral blood samples from a large cohort of SCZ patients (n = 484) and CTRLs (n = 496) screening for the expression of specific gene targets of the four DE miRNAs that were identified in our baseline astrocyte setup. Three of these genes, LAMTOR4, IL23R, and ERBB3, had a significantly lower expression in the blood of SCZ patients compared to CTRLs after multiple testing correction. We also found nominally significant differences for ERBB2 and IRAK1, which similarly displayed lower expressions in SCZ versus CTRL. Furthermore, we found matching patterns between the expressions of identified miRNAs and their target genes when comparing our in vitro and in vivo results. The current results further our understanding of the pathobiological basis of SCZ.


Assuntos
Células-Tronco Pluripotentes Induzidas , MicroRNAs , Esquizofrenia , Astrócitos , Perfilação da Expressão Gênica , Fatores de Troca do Nucleotídeo Guanina , Humanos , Inflamação/genética , MicroRNAs/genética , Esquizofrenia/genética , Transcriptoma
11.
ACS Appl Bio Mater ; 4(9): 6832-6842, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35006983

RESUMO

As a potent nonviral system for biomolecular delivery to neurons via their axons, we have studied molecular characteristics of lysinated fluorescent dextran nanoconjugates with degrees of conjugation of 0.54-15.2 mol lysine and 0.25-7.27 mol tetramethyl rhodamine isothiocyanate (TRITC) per mol dextran. We studied the influence of conjugation with lysine and TRITC on the size and structure of different molecular weight dextrans and their mobility within axons. Dynamic light scattering (DLS) and small-angle neutron scattering (SANS) experiments revealed significant differences in the size and structure of unmodified and modified dextrans. Unexpectedly, lower-molecular-weight conjugated dextrans exhibited higher molecular volumes, which we propose is due to fewer intramolecular interactions than in higher-molecular-weight conjugated dextrans. Assessment of retrograde and anterograde movement of lysine- and TRITC-conjugated dextrans in axons in the lumbar spinal cord of chicken embryos showed that lower-molecular-weight dextrans translocate more efficiently than higher-molecular-weight dextrans, despite having larger molecular volumes. This comparative characterization of different molecular weight dextrans will help define optimal features for intracellular delivery.


Assuntos
Dextranos , Lisina , Animais , Embrião de Galinha , Dextranos/farmacologia , Corantes Fluorescentes/química , Nanoconjugados , Neurônios , Rodaminas
12.
Front Neuroanat ; 15: 806815, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35173589

RESUMO

The vestibular column is located in the hindbrain between the sensory auditory (dorsal) and trigeminal (ventral) columns, spanning rhombomeres r1 (or r2) to r9. It contains the vestibular nuclear complex that receives sensory innervation from the labyrinthine end organs in the inner ear. Gene expression studies and experimental manipulations of developmental genes, particularly Hox genes and other developmental patterning genes, are providing insight into the morphological and functional organization of the vestibular nuclear complex, particularly from a segmental standpoint. Here, we will review studies of the classical vestibular nuclei and of vestibular projection neurons that innervate distinct targets in relation to individual rhombomeres and the expression of specific genes. Studies in different species have demonstrated that the vestibular complex is organized into a hodological mosaic that relates axon trajectory and target to specific hindbrain rhombomeres and intrarhombomeric domains, with a molecular underpinning in the form of transcription factor signatures, which has been highly conserved during the evolution of the vertebrate lineage.

13.
Exp Neurol ; 337: 113536, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33264635

RESUMO

The inability to reliably replicate mitochondrial DNA (mtDNA) by mitochondrial DNA polymerase gamma (POLG) leads to a subset of common mitochondrial diseases associated with neuronal death and depletion of neuronal mtDNA. Defining disease mechanisms in neurons remains difficult due to the limited access to human tissue. Using human induced pluripotent stem cells (hiPSCs), we generated functional dopaminergic (DA) neurons showing positive expression of dopaminergic markers TH and DAT, mature neuronal marker MAP2 and functional synaptic markers synaptophysin and PSD-95. These DA neurons were electrophysiologically characterized, and exhibited inward Na + currents, overshooting action potentials and spontaneous postsynaptic currents (sPSCs). POLG patient-specific DA neurons (POLG-DA neurons) manifested a phenotype that replicated the molecular and biochemical changes found in patient post-mortem brain samples namely loss of complex I and depletion of mtDNA. Compared to disease-free hiPSC-derived DA neurons, POLG-DA neurons exhibited loss of mitochondrial membrane potential, loss of complex I and loss of mtDNA and TFAM expression. POLG driven mitochondrial dysfunction also led to neuronal ROS overproduction and increased cellular senescence. This deficit was selectively rescued by treatment with N-acetylcysteine amide (NACA). In conclusion, our study illustrates the promise of hiPSC technology for assessing pathogenetic mechanisms associated with POLG disease, and that NACA can be a promising potential therapy for mitochondrial diseases such as those caused by POLG mutation.


Assuntos
Acetilcisteína/análogos & derivados , Antioxidantes/uso terapêutico , DNA Polimerase gama/genética , Neurônios Dopaminérgicos/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Doenças Mitocondriais/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Acetilcisteína/uso terapêutico , Potenciais de Ação , Senescência Celular/genética , DNA Mitocondrial/genética , Complexo I de Transporte de Elétrons/metabolismo , Potenciais Pós-Sinápticos Excitadores , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Canais de Sódio/metabolismo
14.
Sci Rep ; 10(1): 19027, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33149236

RESUMO

Differential fluorescence labeling and multi-fluorescence imaging followed by colocalization analysis is commonly used to investigate cellular heterogeneity in situ. This is particularly important when investigating the biology of tissues with diverse cell types. Object-based colocalization analysis (OBCA) tools can employ automatic approaches, which are sensitive to errors in cell segmentation, or manual approaches, which can be impractical and tedious. Here, we present a novel set of tools for OBCA using a semi-automatic approach, consisting of two ImageJ plugins, a Microsoft Excel macro, and a MATLAB script. One ImageJ plugin enables customizable processing of multichannel 3D images for enhanced visualization of features relevant to OBCA, and another enables semi-automatic colocalization quantification. The Excel macro and the MATLAB script enable data organization and 3D visualization of object data across image series. The tools are well suited for experiments involving complex and large image data sets, and can be used in combination or as individual components, allowing flexible, efficient and accurate OBCA. Here we demonstrate their utility in immunohistochemical analyses of the developing central nervous system, which is characterized by complexity in the number and distribution of cell types, and by high cell packing densities, which can both create challenging situations for OBCA.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Automação/métodos
15.
Curr Biol ; 30(20): R1243-R1245, 2020 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-33080189

RESUMO

The appendicularian tunicate Oikopleura epitomizes the degree to which evolution can constrain both genome and cellular composition, while at the same time unleashing fantastic specializations.


Assuntos
Urocordados , Animais , Encéfalo/anatomia & histologia , Genoma/genética , Movimento , Polissacarídeos/metabolismo , Urocordados/anatomia & histologia , Urocordados/genética , Urocordados/metabolismo
17.
Sci Rep ; 10(1): 996, 2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31969659

RESUMO

In the developing spinal cord, Onecut transcription factors control the diversification of motor neurons into distinct neuronal subsets by ensuring the maintenance of Isl1 expression during differentiation. However, other genes downstream of the Onecut proteins and involved in motor neuron diversification have remained unidentified. In the present study, we generated conditional mutant embryos carrying specific inactivation of Onecut genes in the developing motor neurons, performed RNA-sequencing to identify factors downstream of Onecut proteins in this neuron population, and employed additional transgenic mouse models to assess the role of one specific Onecut-downstream target, the transcription factor Nkx6.2. Nkx6.2 expression was up-regulated in Onecut-deficient motor neurons, but strongly downregulated in Onecut-deficient V2a interneurons, indicating an opposite regulation of Nkx6.2 by Onecut factors in distinct spinal neuron populations. Nkx6.2-null embryos, neonates and adult mice exhibited alterations of locomotor pattern and spinal locomotor network activity, likely resulting from defective survival of a subset of limb-innervating motor neurons and abnormal migration of V2a interneurons. Taken together, our results indicate that Nkx6.2 regulates the development of spinal neuronal populations and the formation of the spinal locomotor circuits downstream of the Onecut transcription factors.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Neurônios Motores/metabolismo , Fatores de Transcrição Onecut/metabolismo , Medula Espinal/metabolismo , Fatores de Transcrição/metabolismo , Animais , Expressão Gênica , Proteínas de Homeodomínio/genética , Locomoção/fisiologia , Camundongos , Camundongos Transgênicos , Fatores de Transcrição Onecut/genética , Fatores de Transcrição/genética
18.
Mol Imaging Biol ; 22(6): 1469-1488, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-31802361

RESUMO

Stem cell-based therapeutics is a rapidly developing field associated with a number of clinical challenges. One such challenge lies in the implementation of methods to track stem cells and stem cell-derived cells in experimental animal models and in the living patient. Here, we provide an overview of cell tracking in the context of cardiac and neurological disease, focusing on the use of iron oxide-based particles (IOPs) visualized in vivo using magnetic resonance imaging (MRI). We discuss the types of IOPs available for such tracking, their advantages and limitations, approaches for labeling cells with IOPs, biological interactions and effects of IOPs at the molecular and cellular levels, and MRI-based and associated approaches for in vivo and histological visualization. We conclude with reviews of the literature on IOP-based cell tracking in cardiac and neurological disease, covering both preclinical and clinical studies.


Assuntos
Rastreamento de Células , Compostos Férricos/química , Cardiopatias/terapia , Imagem Molecular , Doenças do Sistema Nervoso/terapia , Células-Tronco/citologia , Animais , Humanos
19.
eNeuro ; 6(6)2019.
Artigo em Inglês | MEDLINE | ID: mdl-31704703

RESUMO

2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-inducible poly-ADP-ribose polymerase (TIPARP) is an enzyme that adds a single ADP-ribose moiety to itself or other proteins. Tiparp is highly expressed in the brain; however, its function in this organ is unknown. Here, we used Tiparp-/- mice to determine Tiparp's role in the development of the prefrontal cortex. Loss of Tiparp resulted in an aberrant organization of the mouse cortex, where the upper layers presented increased cell density in the knock-out mice compared with wild type. Tiparp loss predominantly affected the correct distribution and number of GABAergic neurons. Furthermore, neural progenitor cell proliferation was significantly reduced. Neural stem cells (NSCs) derived from Tiparp-/- mice showed a slower rate of migration. Cytoskeletal components, such as α-tubulin are key regulators of neuronal differentiation and cortical development. α-tubulin mono-ADP ribosylation (MAR) levels were reduced in Tiparp-/- cells, suggesting that Tiparp plays a role in the MAR of α-tubulin. Despite the mild phenotype presented by Tiparp-/- mice, our findings reveal an important function for Tiparp and MAR in the correct development of the cortex. Unravelling Tiparp's role in the cortex, could pave the way to a better understanding of a wide spectrum of neurological diseases which are known to have increased expression of TIPARP.


Assuntos
Córtex Cerebral/crescimento & desenvolvimento , Neurônios GABAérgicos/metabolismo , Células-Tronco Neurais/metabolismo , Poli(ADP-Ribose) Polimerases/genética , Animais , Ciclo Celular/fisiologia , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Neurônios GABAérgicos/citologia , Camundongos , Camundongos Knockout , Células-Tronco Neurais/citologia , Poli(ADP-Ribose) Polimerases/metabolismo
20.
eNeuro ; 6(1)2019.
Artigo em Inglês | MEDLINE | ID: mdl-30899776

RESUMO

Vestibulospinal neurons are organized into discrete groups projecting from brainstem to spinal cord, enabling vertebrates to maintain proper balance and posture. The two largest groups are the lateral vestibulospinal tract (LVST) group and the contralateral medial vestibulospinal tract (cMVST) group, with different projection lateralities and functional roles. In search of a molecular basis for these differences, we performed RNA sequencing on LVST and cMVST neurons from mouse and chicken embryos followed by immunohistofluorescence validation. Focusing on transcription factor (TF)-encoding genes, we identified TF signatures that uniquely distinguish the LVST from the cMVST group and further parse different rhombomere-derived portions comprising the cMVST group. Immunohistofluorescence assessment of the CNS from spinal cord to cortex demonstrated that these TF signatures are restricted to the respective vestibulospinal groups and some neurons in their immediate vicinity. Collectively, these results link the combinatorial expression of TFs to developmental and functional subdivisions within the vestibulospinal system.


Assuntos
Córtex Cerebral/citologia , Neurônios/citologia , Medula Espinal/citologia , Fatores de Transcrição/metabolismo , Núcleos Vestibulares/citologia , Animais , Evolução Biológica , Córtex Cerebral/metabolismo , Embrião de Galinha , Camundongos Transgênicos , Vias Neurais/citologia , Vias Neurais/metabolismo , Neurônios/metabolismo , Medula Espinal/metabolismo , Transcriptoma , Núcleos Vestibulares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...